
An Empirical Study on the Adoption of Scripted
GUI Testing for Android Apps

Ruizhen Gu and José Miguel Rojas
Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom

rgu10@sheffield.ac.uk, j.rojas@sheffield.ac.uk

Abstract—In recent years, Android applications have become
larger with the introduction of new features and integration
with external APIs and services. As a consequence, testing
these applications is more challenging and time-consuming for
developers. To reduce manual testing efforts, several frameworks
for automated GUI testing of Android applications have been
developed, with Espresso and UI Automator being arguably the
most popular ones. However, the adoption of these scripted GUI
testing frameworks in Android projects remains surprisingly low.

We investigate the use of two scripted GUI testing frameworks,
Espresso and UI Automator among 475 non-trivial open-source
Android applications with GUI tests. We also design and conduct
an experiment involving human developers to observe and
understand their approach to Android automated testing tasks
using these two frameworks, analysing the resulting test code
and their perception of the tasks.

Our preliminary results show that 58% of Android apps
with GUI tests utilise Espresso APIs while only 4% used UI
Automator, 71% of the apps that use UI Automator effectively
combine it with Espresso, and novice developers tend to prefer
Espresso for GUI testing mainly because of its simpler API while
agreeing that the combination of the two frameworks can be
beneficial in covering diverse test cases.

Index Terms—Testing Mobile Apps, Android, Empirical Study

I. INTRODUCTION

Android, and mobile apps in general, naturally tend to

increase in size as they evolve [1]. The quality of mobile

applications (or “apps”) is a determining factor for their

success in mobile app stores (e.g., Google Play, App Store).

Consequently, testing these apps before their release is an

essential part of the software development lifecycle. Unlike

traditional non-graphical programs, Android apps have rich

Graphic User Interfaces (GUIs) that require a series of user

interactions to achieve specific tasks. Besides the testing of the

source code of the apps (e.g., unit testing), the GUIs should

also be tested thoroughly to achieve the desired high quality.

Although various automated Android GUI testing frame-

works exist which aim to reduce manual effort, evidence

suggests that Android developers still rely on expensive and

error-prone manual testing [2, 3]. Some efforts have been

made for scripted GUI testing for Android apps, e.g., gener-

ating Espresso tests from UI interactions [4] and synthesizing

Espresso tests from interaction sequences [5]. However, this

research topic seems less explored compared to others such as

input generation or crash reproduction [6].

Previous studies found that Espresso and UI Automa-

tor (https://developer.android.com/training/testing) are the two

most popular scripted GUI testing frameworks for Android

apps [7, 8]. They are both officially supported, which makes

them the most intuitive GUI testing frameworks to choose for

app developers. Espresso is recommended for small projects

because its API is simple and it has synchronization capabil-

ities developers can rely on to deal with transitions between

Android windows (i.e., activities, menus and dialogs), which

should lead to fewer lines of test code and good readability.

However, Espresso can only perform interactions within the

current application under test (AUT). Although UI Automator

has cross-app functionality to interact with the system or

third-party apps, the test code it yields can be very long

and requires developers to manually add wait actions to

deal with window transitions [7]. The features offered by

Espresso and UI Automator make them complementary and

their combination is encouraged to cover most use cases [9].

There exists little evidence on the extent to which these

UI testing frameworks have achieved their expected levels

of adoption by the Android app development community. In

this work, we investigate the adoption of scripted GUI tests

in existing Android projects. To this aim, we designed and

conducted an empirical study consisting of two parts:

• We analysed 475 Android projects containing GUI tests

to understand the adoption of Espresso, UI Automator

and the combination of the two. The projects are selected

from an existing dataset of over 12,000 non-trivial open-

source Android projects on GitHub [8].

• We asked six novice Android developers to write UI test

cases with Espresso and UI Automator. Our research

questions aim to understand how developers approach

the testing task, the challenges they encounter and their

perception towards the frameworks. Study participants

attended an introductory lecture on Android testing and

a guided hands-on practice session to familiarise them-

selves with the task. Participants submitted their test code,

a log detailing their activities during the task, and re-

sponses to an exit survey capturing their perceptions and

perspectives towards the testing task and the frameworks.

Our preliminary results suggest a limited adoption of

scripted GUI testing frameworks in open-source projects. Our

study with Android developers requires further replications

before we can make stronger claims, but we outline emerging

conjectures on challenges and opportunities associated with

developing test cases with Espresso and UI Automator.

179

2023 38th IEEE/ACM International Conference on Automated Software Engineering Workshops (ASEW)

2151-0849/23/$31.00 ©2023 IEEE
DOI 10.1109/ASEW60602.2023.00030

20
23

 3
8t

h
IE

EE
/A

CM
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
ut

om
at

ed
 S

of
tw

ar
e

En
gi

ne
er

in
g

W
or

ks
ho

ps
 (A

SE
W

) |
 9

79
-8

-3
50

3-
30

32
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

AS
EW

60
60

2.
20

23
.0

00
30

Authorized licensed use limited to: Sheffield University. Downloaded on November 27,2023 at 14:33:30 UTC from IEEE Xplore. Restrictions apply.

II. METHODOLOGY

The ultimate goal of this study is to gather evidence on

the adoption of scripted GUI testing in Android projects,

understand the state of practice, identify current challenges

and explore opportunities for improvement.

A. Research Questions

RQ1: What are the adoption rates of Espresso and UI
Automator in open-source Android projects? With this research

question, we investigate the adoption of the two most popular

Android GUI testing frameworks (Espresso and UI Automator)

in open-source projects, their frequency of usage, and the

testing scenarios where developers combine them.

RQ2: How effective are Android developers at writing test
cases using Espresso and UI Automator? We examine the

test code to explore potential correlations with the limited

adoption of GUI testing frameworks, such as the quality, effort

being made and the maintainability of the test code. We also

assess the test code to evaluate if the developers have a clear

understanding of the practices of the testing frameworks.

RQ3: How do Android developers perceive the task of
writing test cases using Espresso and UI Automator? We

gather insights from the developers’ aspects to understand the

challenges and limitations they encounter when using scripted

GUI testing in their developments. We also observe if the

developers tend to prefer one framework over another and the

reasons behind their choices.

RQ4: What are the challenges and opportunities in Android
scripted GUI testing? Based on the observation from the adop-

tion of the two scripted GUI testing frameworks and the study

participants’ perspectives, we identify existing challenges for

Android developers and discuss potential improvements.

B. Use of GUI Testing Frameworks in Open-Source Projects

To address RQ1, we identified the two most popular Android

GUI testing frameworks, Espresso and UI Automator, as the

study subjects. We used a dataset [8] containing 12,562 non-

trivial, real-world Android apps to identify the apps that use

Espresso, UI Automator or a combination of both.

C. User Study

The goal of the user study is to gain insights into how

developers tackle automated testing tasks using the provided

testing frameworks (RQ2-4). The study consists of two in-

person sessions: a guided training session for participants to

come to grips with Android GUI testing and the selected

frameworks, and a main session where participants are asked

to complete a GUI scripted testing task independently.

1) Participants: The potential participants of the study are

software developers with experience in Android app devel-

opment who may or may not have experience with scripted

GUI testing frameworks. We aim to recruit participants with

a range of experience using the frameworks, from university

students without any prior experience to seasoned professional

developers with years of Android testing experience.

For the initial study, we recruited six Computer Science

MSc students from The University of Sheffield who had passed

the Software Development for Mobile Devices module, are

familiar with Android app development, but have little prior

GUI testing experience. As an incentive [10], participants of

the study were compensated with a £30 Amazon vouchers for

their time attending both sessions. We aim to recruit 20 to 30

participants altogether by means of replications.

2) Target Apps: Expresso and UI Automator have com-

plementary feature sets, e.g., UI Automator is particularly

appropriate for cross-app interactions and custom view com-

ponent interactions. To address our research questions, it was

essential to identify apps where these types of interactions

exist. Among the candidate features (e.g., maps or social media

interactions), we identified the use of the system calendar as a

natural, intuitive choice. Therefore, we searched the F-Droid

repository (https://f-droid.org/) for apps with the permission

of Read calendar events and details enabled, which indicates

these apps are likely to implement interactions with the system

Calendar app. We selected two suitable apps for the study,

ShiftCal (https://gitlab.com/Nulide/ShiftCal) and DroidShows
(https://github.com/ltGuillaume/DroidShows). The suitability

criteria are: apps with multiple testable features which do not

require hardware (e.g., wearables), registration or login and are

not home-screen widgets. Both applications were upgraded to

use Android 8 and Gradle as build tool. ShiftCal was extended

with easy-to-test CRUD features for training purposes.

3) Training: We designed a training session to set a base-

line understanding of the testing frameworks under study

among participants. The session starts with an introductory

lecture on automated Android GUI testing using Espresso

and UI Automator. A walkthrough and reference materials of

the essential APIs of both frameworks are also covered. The

lecture is followed by a practical session, in which participants

familiarised themselves with both testing frameworks through

a guided task (similar to Ardito et al. [11]). Participants

were provided with an open-source Android app ShiftCal and

were asked to develop one test case following step-by-step

text instructions. Each instruction step corresponds to one or

multiple actions and requires a small number of lines of test

code to implement. In this training session, the framework to

be used to accomplish each step was prescribed to participants,

in order to provide participants with hands-on experience with

both frameworks. The lecture lasts 30 minutes and the practical

session takes one hour. The research team provided assistance

and guidance during the practical session.

4) Main task: In the main session, participants are tasked to

develop three test cases for the open-source DroidShows app.

Participants are asked to work independently and without help

from the research team. The testing frameworks to be used for

each step are not prescribed and participants are encouraged to

use their best judgement to accomplish the task. Brief textual

descriptions and video instructions are given in this session

instead of step-by-step instructions. The video instructions

consist of the recording of the actions to be performed by

the test cases and the text descriptions of the actions as

180

Authorized licensed use limited to: Sheffield University. Downloaded on November 27,2023 at 14:33:30 UTC from IEEE Xplore. Restrictions apply.

subtitles. The overall time for the main session, including test

development and survey is 1.5 hours. It is important to mention

that the test cases designed for the apps for both sessions

involve actions that can only be performed by UI Automator.

5) Data Collection: Three artefacts are elicited from partic-

ipants: test code, activity logs, and answers to an exit survey.

a) Test Code: Participants are asked to export their

Android projects and place them in a given shared drive. The

test code will be analysed in terms of coverage and other

quality and maintainability metrics. A qualitative analysis of

the use of the GUI testing frameworks will be conducted and

mutation analysis will be used to assess test effectiveness [12].

b) Developer Activities: To observe developers’ be-

haviour when writing GUI test cases, we designed an activity

log for participants to record their activities every 10 minutes

in the sessions using a problem-solution cycle approach [13].

The activities are classified as Understanding Tasks, Search-
ing Solutions, Applying/Refining Solutions and Others. The

Applying/Refining Solutions category is split into two options

Espresso and UI Automator to reflect the differences between

the efforts made using the two frameworks during the task.

Participants were asked to select the activity that dominates

their behaviour and indicate the level of confidence about their

actions in the last 10 minutes. While the activity log was used

in both training and main session, only the activity log from

the main study session is used for analysis. The template of

the activity log can be found in our supplementary materials1.

c) Survey: After finishing their testing task, participants

are required to answer an exit survey. It covers demographic

questions related to the development and testing experience

and the participants’ perspectives towards tackling the tasks

with Espresso and UI Automator. The full survey can be found

in our supplementary materials1.

6) Pilot: To make sure the objectives, materials and instruc-

tions of the study are clear, we conducted two pilot sessions

with computer science PhD students. Their feedback helped

us refine the lecture slides, target apps and task instructions.

III. PRELIMINARY RESULTS AND DISCUSSION

A. Scripted GUI Testing Frameworks

RQ1: Adoption in open-source projects: We collected 502
apps with UI tests from [8] to examine the adoption rates

of Espresso and UI Automator. We used the Selenium web

crawler (https://selenium.dev) to identify repositories that im-

ported the libraries from the frameworks and called the APIs

in the test code under the androidTest folders in the projects.

Table I summarises the results. We filtered out 27 projects

which have been taken down after the construction of the

dataset. 277 out of 475 apps use Espresso, UI Automator, or

both2. Espresso is clearly more prominent than UI Automator,

with 274 apps using it (vs 21). UI Automator is rarely used

exclusively (only in three projects). Out of 18 apps which use

1https://bit.ly/android-testing-study
2Investigating the adoption of other Android GUI testing frameworks, e.g.,

Appium (https://appium.io), is left for future work.

TABLE I: Adoption in open-source Android apps

Group Number of Apps

Total apps with UI tests 502

Active apps 475

Apps including Espresso APIs 274

Apps including UIAutomator APIs 21

Apps including both 18

Apps with actual combination 15

both frameworks, 15 of them include calls to both frameworks’

APIs in the same test (actual combination). Of these, (i) 9

apps have UI Automator exclusive system-level interactions

(e.g., pressing the home button, recent app button, opening the

notification bar, etc), (ii) 4 apps have wait actions, (iii) 3 apps

encompass both system-level interactions and wait actions.

RQ1: 58% of projects with UI tests use Espresso APIs
while only 4% use UI Automator. Among the apps using
UI Automator, 71% combine it with Espresso.

B. User Study

RQ2: Effectiveness at GUI testing task: Six participants

took part in the study. Three of them attempted all three test

cases, achieving 73% of the test steps provided as requirements

on average. At this early stage, this confirms the viability

of our methodology, but attempting to analyse quantitative

effectiveness metrics would be futile. After conducting further

replications to collect more data, we plan to evaluate code

coverage, maintainability and fault detection capability.

RQ3: Perspectives towards Espresso and UI Automator:
Overall, participants preferred to use Espresso to implement

the required test cases. The activity logs suggest they all

followed the pattern Understanding Tasks → Searching So-
lutions → Applying/Refining Solutions. In the category of

Applying/Refining Solutions, all participants spent more time

using Espresso than using UI Automator.

In response to the survey, four participants, including the

three participants who attempted all three test cases, said they

used both Espresso and UI Automator for the task. The main

challenge they identified was searching for Android/resource

ID and locating views/UI elements. Three participants had

trouble locating views without IDs (e.g., a searchable view)

using Espresso without knowing it can be handled by UI

Automator. Answers to ”What actions do you want to perform
but the testing framework(s) you used can not?” confirm

participants’ confusion, as they mentioned actions which can

indeed be performed by both frameworks, e.g., ”Selecting
specific items in a list using item number”. These observations

are understandable, given that the participants in our initial

study are novice developers, but may also be symptomatic

of a lack of comprehensive documentation online for the

frameworks, in particular for UI Automator, as participants

were encouraged to use online resources during the study yet

still struggled to locate helpful material.

All participants perceived Espresso as easier to use, with

statements such as ”It was more intuitive for me” and ”Syntax

181

Authorized licensed use limited to: Sheffield University. Downloaded on November 27,2023 at 14:33:30 UTC from IEEE Xplore. Restrictions apply.

was easier” (survey question #16). They also acknowledged

that UI automator could be helpful to perform actions that

Espresso cannot: ”It can perform some actions that cannot be
performed by Espresso” and ”I only used UI Automator for
the last test case, when I had to interact with the system UI,
rather than just the application, since this is fundamentally
not supported by Espresso” (survey question #17).

RQ3: Participants prefer using Espresso due to its simple
APIs but acknowledge that combining it with UI Automator
could mitigate Espresso’s limitations.

RQ4: Challenges and Opportunities: While this is still

work in progress, the low adoption of scripted GUI testing

frameworks seems evident. We conjecture the contributing

factors include insufficient mobile testing education and a lack

of comprehensive documentation with usage examples and

best practices. Our work needs maturing in order to answer this

RQ more assertively, but enhanced tool support and automated

generation of scripted tests seem like open challenges.

IV. THREATS TO VALIDITY3

External validity: The dataset used in this work is obtained

from previous work [8], and we consider only tests located

in the androidTest folder as UI tests. It is technically pos-

sible, though not very likely as it goes against Android app

development guidelines, to place UI tests in other directories.

Missing these tests could impact the accuracy of the results

of the adoption rates of the frameworks. Furthermore, our

initial study only included novice developers as participants,

therefore answers to RQ2-4 may change after conducting

further replications with more experienced participants.

Internal validity: The data from the activity log is produced

by human developers (participants) and is therefore subject

to cognitive biases. We mitigated this threat by requesting

participants to associate a confidence level with their activities

and reassuring them that they were in an observational study

and were not assessed on their performance.

V. CONCLUSIONS AND FUTURE WORK

This work-in-progress paper presents the methodology and

preliminary results of our study on the use of scripted GUI

testing for Android apps. With the analysis of 475 open-

source apps with UI tests and a user study with 6 computer

science students, we examined the adoption of Espresso and

UI Automator in open-source Android applications and the

perspectives of developers with no prior experience in Android

GUI testing. We found that (i) UI Automator has a lower

adoption rate than Espresso in open-source Android apps

yet most projects featuring UI Automator combine it with

Espresso and (ii) novice developers tend to prefer Espresso

because of its simple APIs while recognising that combining

it with UI Automator can address its limitations.

This paper reports on an initial study with six novice

developers. We aim to conduct further replications of our

3Due to space constraints, we leave a more comprehensive account of
threats to validity for an extended version of this work.

study with more experienced developers as participants. We

also aim to employ other methods, such as interviews or

think-aloud observations, to elicit further insights from them.

Further replications will also enable us to perform more quan-

titative evaluations of participants’ performance. We believe

the insights from this study and future replications could be

beneficial for practitioners to improve tool support and to

inform further research in automated UI test generation [5].

REFERENCES

[1] J. Gao, L. Li, T. F. Bissyandé, and J. Klein, “On the

evolution of mobile app complexity,” in Intl. Conf. on
Eng. of Complex Computer Systems. IEEE, 2019.

[2] M. Linares-Vásquez, C. Bernal-Cardenas, K. Moran,

and D. Poshyvanyk, “How do developers test android

applications?” in Intl. Conf. on Software Maintenance
and Evolution (ICSME). IEEE, 2017.

[3] P. S. Kochhar, F. Thung, N. Nagappan, T. Zimmermann,

and D. Lo, “Understanding the test automation culture

of app developers,” in Intl. Conf. on Software Testing,
Verification and Validation (ICST). IEEE, 2015.

[4] S. Negara, N. Esfahani, and R. Buse, “Practical android

test recording with espresso test recorder,” in Intl. Conf.
on Software Engineering: Software Engineering in Prac-
tice (ICSE-SEIP). IEEE, 2019.

[5] I. Arcuschin, C. Ciccaroni, J. P. Galeotti, and J. M.

Rojas, “On the feasibility and challenges of synthesizing

executable Espresso tests,” in Intl. Conf. on Automation
of Software Test (AST). ACM, 2022.

[6] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test

input generation for android: Are we there yet?” in Intl.
Conf. on Automated Software Engineering (ASE), 2015.

[7] R. Coppola and M. Torchiano, “Scripted gui testing

of android apps: A study on diffusion, evolution and

fragility,” in Intl. Conf. on Predictive Models and Data
Analytics in Software Engineering. ACM, 2017.

[8] J.-W. Lin, N. Salehnamadi, and S. Malek, “Test automa-

tion in open-source android apps: A large-scale empirical

study,” in Intl. Conf. on Automated Software Engineering
(ASE). IEEE, 2020.

[9] D. Zelenchuk, Android Espresso Revealed: Writing Au-
tomated UI Tests. Apress Berkeley, CA, 2019.

[10] W. Mason and D. J. Watts, “Financial incentives and

the “performance of crowds”,” in SIGKDD Workshop on
Human Computation (HCOMP). ACM, 2009.

[11] L. Ardito, R. Coppola, M. Morisio, and M. Torchiano,

“Espresso vs. EyeAutomate: An experiment for the com-

parison of two generations of android gui testing,” in

Eval. and Assmt. on Soft. Eng. (EASE). ACM, 2019.

[12] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei, “Mu-

tation operators for testing android apps,” Inf. Softw.
Technol., vol. 81, no. C, 2017.

[13] T. Roehm and W. Maalej, “Automatically detecting de-

veloper activities and problems in software development

work,” in Intl. Conf. on Software Engineering (ICSE).
IEEE, 2012.

182

Authorized licensed use limited to: Sheffield University. Downloaded on November 27,2023 at 14:33:30 UTC from IEEE Xplore. Restrictions apply.

