XRINTTEST: An Automated Framework for User
Interaction Testing in Extended Reality Applications

Ruizhen Gu, José Miguel Rojas, and Donghwan Shin
School of Computer Science, University of Sheffield, Sheffield, UK
{rgul0, j.rojas, d.shin} @sheffield.ac.uk

Abstract—Extended Reality (XR) technologies offer immersive
user experiences across diverse application domains, present-
ing unique testing challenges due to their spatial interaction
paradigms. While existing works test XR applications through
scene navigation and interaction triggering, they fail to synthesise
realistic spatial input via specialised XR devices, such as 6 degrees
of freedom controller gestures, that are essential for modern XR
user experiences. To address this gap, we present XRINTTEST, an
automated testing framework for Unity-based XR applications.
XRINTTEST starts by constructing an XR User Interaction
Graph that models interaction targets and required events.
Leveraging this graph, it then automatically explores the XR
scene under test and generates user interactions. We evaluated
XRINTTEST on XRBENCH3D, a novel benchmark comprising
seven XR scenes containing 367 distinct 3D user interactions.
XRINTTEST shows great effectiveness, achieving 97% coverage
of trigger and grab interactions across all scenes, 9x more
effective and 5x more efficient than random exploration, while
detecting runtime exceptions and functional defects. We open-
sourced our tool and dataset at https://github.com/ruizhengu/
XRintTest and https://github.com/ruizhengu/XRBench3D, respec-
tively. A video demo is available on YouTube at https://youtu.be/
K0Q6waE47Us,

Index Terms—Extended Reality, Software Testing, 3D Interac-
tion, Model-based Testing

I. INTRODUCTION

Extended Reality (XR) encompasses Augmented, Mixed,
and Virtual Reality (AR, MR, and VR, respectively). XR appli-
cations (XR apps) present immersive digital environments with
interactive content. XR app testing prioritises functionality and
user interaction above other non-functional test targets such
as cybersickness [1} [2]. Current approaches, however, face
critical limitations in testing XR user interactions: (i) inability
to synthesise user spatial interactions from XR input devices,
(i1) lack of systematic methods to model user interactions,
and (iii) exclusive focus on simplified interaction types (i.e.,
2D interactions like mouse clicks) [3l 4]]. These gaps are par-
ticularly problematic given modern XR applications’ reliance
on 6 degrees of freedom (DoF) controllers and gesture-based
interactions, which enable realistic manipulation of virtual
objects in 3D space (e.g., grab and move a virtual ball).

To address the challenges, we present XRINTTEST in this
tool paper, the first automated framework for testing user
interactions in XR apps. It first constructs XR User Interaction
Graph (XUI graph), an abstraction of interactions within an
XR scene. The graph represents interactive objects as nodes
(e.g., a ball), the flow of interaction execution as directed
edges, and interaction events (e.g., grab) as edge labels. It

then automatically explores the scenes to activate interactions.
Interaction activations are defined as successfully initiating
inputs (e.g., pressing the grab button on controllers) on in-
teractable objects, triggering their required interaction logic,
and fully exercising their intended functionality. XRINTTEST
enables developers to perform end-to-end testing to validate
specific XR user interactions, reducing the manual testing
burden associated to relying on physical devices like HMDs.

Unlike existing tools, XRINTTEST targets 3D interactions
in XR apps, specifically the fundamental interaction types of
trigger and grab, as well as their combinations. To evaluate
our approach, we construct XRBENCH3D, a novel benchmark
dataset comprising seven XR scenes with 367 3D interac-
tions from six open-source apps. XRINTTEST demonstrates
remarkable effectiveness and efficiency in covering trigger and
grab interactions, achieving 97% across all subject scenes and
reaching about 100% coverage within two minutes for most
scenes. Compared to a random testing baseline, XRINTTEST
yields approximately 9x higher effectiveness and 5x higher
efficiency. Additionally, XRINTTEST can successfully detect
both runtime exceptions and non-exception interaction issues.

To summarise, XRINTTEST is the first automated testing
framework for comprehensive spatial user interactions in XR
apps. By open-sourcing our tool and dataset, we hope that
more researchers and practitioners can join and contribute to
the emerging domain of XR app testing.

II. BACKGROUND AND RELATED WORK

A. XR Development with Unity

Unity XR projects are organised by means of scenes, each
containing fundamental entities named GameObjects (GOs for
short). Developers can extend GOs’ functionality by configur-
ing components and attaching custom scripts to define GO’s
specific behaviours and interaction patterns.

The XR Interaction Toolkit[] (XRI) is Unity’s development
framework for XR experiences. It encompasses three primary
features: 3D Interaction, UI Interaction, and Locomotion. The
3D interaction system, specifically, is essential for spatial user
interaction. It comprises two script-based components attached
to GOs: (i) Interactors handle user input and initiate interac-
tions with interactable objects, and (ii) Interactables respond
to interactors, defining specific behaviours for interactions. For

Uhttps://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit @3.1


https://github.com/ruizhengu/XRintTest
https://github.com/ruizhengu/XRintTest
https://github.com/ruizhengu/XRBench3D
https://youtu.be/K0Q6waE47Us
https://youtu.be/K0Q6waE47Us
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1

instance, a controller interactor can grab a ball object with
XRI’'s XR Grab Interactable component.

B. XR Scene Testing

Scene testing is a type of testing that focuses on explor-
ing XR scenes through two primary tasks: scene navigation
and interaction event triggering [2]. Wang et al. pioneered
VR testing with VRTEST [3] and VRGUIDE [4], the first
tools for automated VR scene testing. These tools employ
techniques like pure random and greedy-based exploration.
However, these approaches are designed and evaluated based
on simplified VR projects that exclusively rely on basic inter-
action mechanisms such as triggering UI events. XRINTTEST
addresses this limitation by synthesising spatial interactions
through specialised XR input methods, such as hand-held
controllers that enable realistic 3D interactions.

III. DATASET

We constructed the XRBENCH3D dataset using open-
source XR projects built with XRI, the arguably most widely
adopted framework for implementing XR interactions in Unity.
We collected 13 candidate projects from two representative
sources: GitHub and Unity Asset StoreE] by querying with
XR-related keywords: “XR”, “VR”, “AR”, and “MR”. Upon
manual inspection, we identified seven distinct XR scenes
spanning six free and self-contained XR projects, with licenses
that make them suitable as open-source benchmarks. Since
the current implementation of XRINTTEST focuses on 3D
interactions, we ensured the included projects all demonstrate
XR-specific 3D interaction mechanics, such as manipulating
virtual objects through hand-held controllers and gestures. Ad-
ditionally, we exclude locomotion and UI interaction compo-
nents through careful manual curation to make XRBENCH3D
dedicated to 3D interaction testing.

The resulting dataset contains 367 distinct interactions in
total. We categorised them into three groups: trigger (49
interactions, 13%), grab (230, 63%), and others (88, 24%).
The trigger, grab interactions align with the trigger and grab
buttons on XR controllers (§ [[I-A). The interactions in the
others groups are primarily customised by developers to meet
project-specific requirements or interaction patterns.

XRBENCH3D is carefully adapted with minimal modifica-
tions to ensure compatibility with the latest versions of Unity
(6000.0.45f1) and XRI (3.1.1). The dataset is open-sourced at
https://github.com/ruizhengu/XRBench3D.

IV. FRAMEWORK

Fig. [T] shows the workflow of XRINTTEST. It consists of
three major steps: XUI graph construction, dynamic scene
exploration, and test result checking. The framework is pro-
vided with detailed instructions and automated scripts to check
and install the required dependencies. The framework is open-
sourced at https://github.com/ruizhengu/XRintTest.

N

1
Unity Scene
Y Ao

.d:
B

7

O O Test Result
N\ Controller

O’O Movement

XUI Graph

Dynamic Exploration

Fig. 1: XR User Interaction Testing with XRINTTEST

User '

| 1
es = (grab, @)
ey = (grab, @)
es = (trigger,{e3})

| l ,
(o) Gonse) (o)

Fig. 2: XR User Interaction Graph Example

e = (trigger, @)

A. XR User Interaction Graph Construction

This step builds the XUI graph from the scene under test
(ScUT). Fig. [2] shows an XUI graph example, depicting the
XUI events within a scene, containing one interactor User and
three interactables Button, Handle, and Gun.

The construction of the XUI graph is implemented as a
EditorWindow script that enables users to generate graphs
automatically within a Unity Editor tab. It traverses all the
GOs within the ScUT and identifies those with interaction
scripts attached, mapping these scripts to their corresponding
interaction types. For example, an XRGrabInteractable
script is mapped to the grab interaction type.

To support various developer-implemented custom interac-
tion scripts, our framework provides extensibility through a
JSON configuration file. It allows users to specify custom
interaction types and their associated scripts. For instance, a
custom interaction script XRKnob can be configured to be
supported by the grab interaction.

To prevent misidentification of interactions, this step ad-
dresses an issue akin to Android testing’s “ambiguous GUI”
problem [5]. We resolve multiple GOs that share identical
names by generating unique identifiers while preserving their
properties. This ensures the XUI graph contains unique GO
identifiers, eliminating ambiguity during testing.

B. Automated Scene Exploration

This step automates the traversal of the XUI graph (e.g.,
Fig. [2) to activate all identified interactions. The exploration
employs a finite-state machine with three sequential states:
navigation, controller movement, and interaction. State tran-
sitions occur when specific conditions are met. For instance,

Zhttps://assetstore.unity.com/


https://github.com/ruizhengu/XRBench3D
https://github.com/ruizhengu/XRintTest
https://assetstore.unity.com/

1 var kboard = InputSystem.GetDevice<Keyboard> () ;
2 InputSystem.QueueStateEvent (kboard, new
— KeyboardState (Key.G));

(a) Executing grab interaction

var kboard = InputSystem.GetDevice<Keyboard>();
// Hold the grab key
InputSystem.QueueStateEvent (kboard, new
— KeyboardState (Key.G));

// Wait time/hold duration

yield return new WaitForSeconds (0.1f);
// Press the trigger key while grabbing
InputSystem.QueueStateEvent (kboard, new
— KeyboardState (Key.T, Key.G));

yield return new WaitForSeconds (0.1f);

9 // Releasing both keys

10 InputSystem.QueueStateEvent (kboard, new
— KeyboardState());

W -

O T IS

(b) Executing grab-and-fire compositional interaction

Fig. 3: Examples of direct grab and compositional grab-and-
fire interactions

when the virtual user (i.e., a simulated agent representing the
user in the XR environment) reaches sufficient proximity to
the target interactable during navigation, it switches to the
controller movement states.

1) Navigation: Navigation, moving the virtual user between
locations, is one key task of XR scene testing. XRINTTEST
facilitates effective scene exploration by leveraging informa-
tion from the serialised XUI graph (JSON file) to locate
corresponding GOs based on their unique identifiers. The
exploration adopts a greedy policy—at the beginning of each
navigation state, it guides the virtual user towards the nearest
unvisited interactables from their current position [3]].

2) Controller Movement: This state is activated when the
virtual user is close enough to a target interactable. It manip-
ulates the position of simulated input devices to engage with
interactables. XRINTTEST uses Unity’s XR Interaction Sim-
ulato to generate user interaction events from simulated XR
controllers. This simulator cannot directly control camera or
controller positions. It instead drives them indirectly through
simulated keyboard and mouse input events (e.g., pressing
the W key to move forward). XRINTTEST automatically
synthesises the required keyboard input events based on the
relative position between the controller and target interactable,
enabling continuous and directed movement towards the target.

3) Interaction: This state serves the key task of activating
interaction events. Once the controller has contacted the target
interactable, this state is activated to engage with the target
using identified interaction types. Similar to controller posi-
tioning, we simulate specific key events to execute the trigger
and grab actions on the controller. The compositional patterns
involve sequential events of holding specific keys, pressing
additional keys while holding, and releasing keys.

XRINTTEST currently supports the fundamental interac-
tions including grab, trigger, and grab-and-fire composition.

3https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit @3.1/
manual/xr-interaction-simulator-overview.html

Fig. and show the grab and grab-and-fire patterns,
respectively. As the simulator uses simulated input events for
event execution (§ [[V-B2), implementations require keyboard
inputs rather than controllers. Fig. [] illustrates the interaction
sequence corresponding to the implementation in Fig. [3b]

C. Test Result Checking

This step verifies successful interaction executions, address-
ing cases where controller inputs initiate but fail to activate
target interactable behaviours. XRINTTEST register callback
listeners to each interactable using XRI’s built-in interactable
event systenﬂ After executing an event on an interactable,
XRINTTEST validates success by confirming that the activated
event data matches the target interactable’s information.

XRINTTEST continuously monitors runtime exceptions
along the testing process, recording them with contextual
information about the attempted interaction. Additionally, it
supports integration of mechanisms that detect non-exception
issues, such as unresponsive interaction issues where users
cannot interact with certain interactables despite correct con-
troller positioning and expected event execution. We incor-
porated a detection mechanism for unresponsive interaction
issues by leveraging GO’s collider component. The framework
can also be extended to integrate additional validation mech-
anisms for different testing aspects or test oracles, such as
spatial UI interaction and locomotion.

V. EVALUATION

We assess XRINTTEST using XR User Interaction Coverage
(XUI coverage), which quantifies the proportion of success-
fully activated interaction events in a scene. XUI coverage is
calculated as the number of covered edges divided by the total
number of edges in the XUI graph of the ScUT.

We compare XRINTTEST’s performance on trigger and grab
interactions against a random testing baseline. The baseline
randomly selects and executes user movements and primitive
interaction types. It includes random spawn positioning for
navigation and position reset functionality to prevent the vir-
tual user and controllers from drifting beyond relevant testing
areas. We assess both approaches in terms of effectiveness,
efficiency, and bug detection capability. Note that, as discussed
in § [[=B] we exclude VRTest [3] and VRGuide [4] due to their
inapplicability to our test subjects.

The evaluation is conducted on a MacBook Pro with Ap-
ple M3 Pro Chip, 36 GB of RAM, macOS 15.4.1, Unity
6000.0.45f1, and XRI v3.1.1. To account for Unity’s nondeter-
ministic processes, we averaged results from five independent
executions for each scene. All comparisons used consistent
environmental parameters, including a doubled simulation
speed and a fixed execution budget of ten simulated minutes.

Table [I] compares the effectiveness of the random baseline
and XRINTTEST in covering the grab and trigger interactions
within the seven subject scenes. Across 279 trigger and grab
user interactions, XRINTTEST shows great effectiveness with

4https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1/
manual/interactable-events.html


https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1/manual/xr-interaction-simulator-overview.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1/manual/xr-interaction-simulator-overview.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1/manual/interactable-events.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1/manual/interactable-events.html

(a) Before interaction (b) Grab action activated

(d) Interaction released

(c) Trigger action activated

Fig. 4: Examples of Compositional Interaction Sequences

TABLE I: Effectiveness (XR User Interaction Coverage)

XRINTTEST

9/9 (100%)
8/8 (100%)

Random Baseline

3.6/9 (40%)
2.6/8 (33%)

Scene

Sample Scene
Demo Scene

XRI Starter Kit 0.6/38 (2%) 37/38 (97%)
Examples_Main 1/52 2%) 52/52 (100%)
Game Scene 6.6/24 (28%) 24/24 (100%)

SI7 (29%)
10.2/131 (8%)

29.6/279 (11%)

17/17 (100%)
124.2/131 (95%)

271.21279 (97%)

Prototype Scene
Escape Room

Average

100%

80%

60%

e XRintTest
== = Random Baseline

40%

XUl Coverage (%)

20%

0%

1 2 3 4 5 6 7 8 9 10
Time (minutes)

Fig. 5: Efficiency (achieving XR User Interaction Coverage)

97% coverage, vastly outperforming the random baseline,
which achieved only 11% coverage overall.

Fig. |3 illustrates the efficiency of XRINTTEST and the
random baseline in achieving XUI coverage averaged from
seven subject scenes. The results show that XRINTTEST
achieves high coverage within 2 minutes in most scenes, reach-
ing near full coverage within the allocated time, consistently
outperforming the random baseline.

Regarding bug detection capabilities, both XRINTTEST
and the random baseline successfully detected one runtime
exception. However, only XRINTTEST, thanks to the test re-
sult checking component’s mechanism to detect unresponsive
interactions, managed to identify two unresponsive interaction
issues attributable to misconfigured object properties.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced an automated testing framework
targeting the user interactions in extended reality applica-

tions. Our evaluation demonstrates that it can significantly
outperform a random baseline approach. We plan to extend
it to support custom interaction patterns and broader scopes
of spatial interaction, e.g., using compositional interaction
patterns generated at runtime using learning-based approaches
like reinforcement/imitation learning [6]. This paper presents
preliminary results from our study, and further evaluation
is needed to fully assess XRINTTEST’s capabilities, which
represents the focus of our future work.

REFERENCES

[1] S. Li, C. Gao, J. Zhang, Y. Zhang, Y. Liu, J. Gu, Y. Peng,
and M. R. Lyu, “Less cybersickness, please: Demystifying
and detecting stereoscopic visual inconsistencies in virtual
reality apps,” Proc. ACM Softw. Eng., no. FSE, 2024.

[2] R. Gu, J. M. Rojas, and D. Shin, “Software testing
for extended reality applications: A systematic mapping
study,” Automated Software Engineering, 2025.

[3] X. Wang, “VRTest: An Extensible Framework for Auto-
matic Testing of Virtual Reality Scenes,” in IEEE/ACM
44th Int. Conf. on Software Engineering: Companion
Proceedings (ICSE-Companion), 2022.

[4] X. Wang, T. Rafi, and N. Meng, “VRGuide: Efficient
Testing of Virtual Reality Scenes via Dynamic Cut Cover-
age,” in 38th IEEE/ACM Int. Conf. on Automated Software
Engineering (ASE), 2023.

[5] T. Fulcini, R. Coppola, M. Torchiano, and L. Ardito, “An
analysis of widget layout attributes to support android gui-
based testing,” in IEEE Int. Conf. on Software Testing,
Verification and Validation Workshops (ICSTW), 2023.

[6] Y. Zheng, X. Xie, T. Su, L. Ma, J. Hao, Z. Meng,
Y. Liu, R. Shen, Y. Chen, and C. Fan, “Wuji: Automatic
online combat game testing using evolutionary deep re-
inforcement learning,” in 34th IEEE/ACM Int. Conf. on
Automated Software Engineering (ASE), 2019.



	Introduction
	Background and Related Work
	XR Development with Unity
	XR Scene Testing

	Dataset
	Framework
	XR User Interaction Graph Construction
	Automated Scene Exploration
	Navigation
	Controller Movement
	Interaction

	Test Result Checking

	Evaluation
	Conclusion and Future Work

