
Ju
st

Acc
ep

ted

A Test Automation Framework for User Interaction
in Extended Reality Applications

Ruizhen Gu
School of Computer Science

University of Sheffield
Sheffield, UK

rgu10@sheffield.ac.uk

José Miguel Rojas
School of Computer Science

University of Sheffield
Sheffield, UK

j.rojas@sheffield.ac.uk

Abstract—Extended Reality (XR) technologies deliver immer-
sive user experiences across diverse application domains but
pose unique testing challenges due to their spatial interaction
paradigms. Existing approaches test XR applications through
scene navigation and interaction triggering, yet they fail to
synthesise realistic spatial input via specialised XR devices. These
devices include 6 degrees of freedom controller gestures and are
essential for modern XR experiences. To address this gap, we
present INTENXION, a test automation framework for validating
user interactions in Unity XR applications. We develop a taxon-
omy of XR user interactions to inform the design of INTENXION,
ensuring it supports a diverse range of XR interaction types. We
conduct a case study to demonstrate INTENXION’s capability,
using eight representative interaction object types selected from
industrial XR interaction design guidelines. INTENXION provides
support for developing intuitive interaction test scripts, including
both action sequences and assertions for expected behaviours.
Our results demonstrate that INTENXION can cover the intended
functionalities of all eight object types.

Index Terms—Extended Reality, Software Testing, Test Au-
tomation, Testing Framework

I. INTRODUCTION

Extended Reality (XR) is an umbrella term for Augmented,
Mixed, and Virtual Reality (AR, MR, and VR, respectively).
XR applications (hereafter, XR apps) are software programs
designed for XR-compatible devices that create virtually
organised spaces populated with interactive digital content,
allowing users to explore and engage with immersive expe-
riences. Realistic, immersive, and interaction-rich experiences
are delivered through head-mounted displays (HMDs) such
as the Meta Quest 31, coupled with input devices like hand-
held controllers. The development environments for these XR
apps have matured considerably in recent years. For example,
Unity has emerged as one of the mainstream platforms for XR
development2, supporting major XR operating systems like
Meta Horizon3 and Android XR4.

As XR apps can span diverse domains and platforms, their
development and testing processes have become substantially
more complex, highlighting the need for more comprehensive
testing approaches [1]. XR app testing can target various
objectives, including functionality and usability, and specific

1 https://www.meta.com/quest/quest-3/ 2 https://unity.com/solutions/xr
3 https://developers.meta.com/horizon/ 4 https://www.android.com/xr/

targets ranging from object placement accuracy [2] to cyber-
sickness detection [3]. Among these diverse testing concerns,
functionality and user interaction remain the most critical
objective and target, respectively [4]. Interaction testing is es-
sential because unpredictable human behaviours and dynamic
XR environments prevent reliable outcome prediction [5]. Rig-
orous testing methodologies must therefore validate consistent
software responses across variable conditions.

Existing effort on XR testing research struggles to simulate
realistic user inputs, such as natural gestures or haptic feed-
back through dedicated XR devices like controllers [4]. More-
over, current work has predominantly focused on conventional
UI (user interface) elements in the XR environments. These UI
elements are fundamentally the same as mobile GUI (graphic
user interface) components, operable through point-and-click
interactions (e.g., via cursor or taps). This narrow focus
overlooks modern XR’s core paradigm of spatial, realistic
interactions. The resulting gap prevents effective evaluation
of XR apps with advanced spatial interaction capabilities.

To address this gap, we present INTENXION, a test automa-
tion framework for validating user interactions in XR apps.
We draw inspiration from industrial-standard Android testing
frameworks like UIAUTOMATOR5 and APPIUM6, which focus
on testing GUI components via simulated user actions (e.g.,
tapping, swiping). Building on this notion, we adapt the GUI
testing principles to the XR realm, targeting user interactions.

To facilitate systematic validation, we first establish a
novel taxonomy of XR user interactions derived from hu-
man–computer interaction (HCI) principles and industry stan-
dards. The taxonomy presents a three-layered categorisation,
including 1) core tasks representing user intents, 2) atomic ac-
tions serving as fundamental building blocks for interactions,
and 3) compositional patterns governing the combination of
atomic actions into complex, meaningful interactions.

This taxonomy directly informs INTENXION’s design, map-
ping the interaction tasks to testable actions. INTENXION
incorporates three key features, including 1) simulation of
complex interaction behaviours via an intuitive API sets,
2) assertions for validating interaction outcomes, and 3) native
support for authoring and executing compositional interaction

5 https://github.com/openatx/uiautomator2 6 https://appium.io/

1

https://www.meta.com/quest/quest-3/
https://unity.com/solutions/xr
https://developers.meta.com/horizon/
https://www.android.com/xr/
https://github.com/openatx/uiautomator2
https://appium.io/


Ju
st

Acc
ep

ted

patterns. To assess INTENXION’s capability in supporting
the development of XR interaction tests, we select eight
distinct XR interactable object types as subjects. These objects
represent diverse interaction patterns and principles from our
taxonomy, such as cases with constrained movements. For
each object type, we develop a dedicated test case using
INTENXION. The tests comprise the interaction sequences to
activate the intended object functionalities, and assertions to
validate the expected object behaviours. The results show that
the test cases developed with INTENXION cover all intended
behaviours with appropriate validation mechanisms.

The contributions of this paper are as follows:

• A taxonomy of XR interactions spanning three differ-
ent layers, covering the core tasks, atomic actions, and
compositional interaction patterns.

• A mapping of XR interaction tasks into testable
actions, establishing the foundation for systematic XR
interaction testing approaches.

• INTENXION, an automation framework for testing
user interactions in Unity XR apps. Through a case
study covering eight distinct interactable object types, we
demonstrate INTENXION’s ability to support developing
test action sequences and interaction outcome assertions.
The implementation, including source code, case study
assets, and test scripts, is available at: https://github.com
/ruizhengu/IntenXion.

This paper is structured as follows. Section II introduces
foundational concepts and related work. Section III presents
our XR interaction taxonomy. Section IV details INTENXION’s
design and implementation. Section V presents our case study
and results. Section VI examines implications of this work, and
Section VII summarises our work and outlines future work.

II. BACKGROUND AND RELATED WORK

A. XR Development with Unity

Unity XR projects are organised by means of scenes, each
containing fundamental entities named GameObjects (GOs for
short). Developers can extend GOs’ functionality by configur-
ing components and attaching custom scripts to define GO’s
specific behaviours and interaction patterns.

The XR Interaction Toolkit [6] (XRI) is Unity’s develop-
ment framework for XR experiences. It encompasses three pri-
mary features: 3D Interaction, UI Interaction, and Locomotion.
The 3D interaction system, specifically, is essential for spatial
user interaction. It comprises two script-based components
attached to GOs: (i) Interactors handle user input and initiate
interactions with interactable objects, and (ii) Interactables
respond to interactors, defining specific behaviours for inter-
actions. For instance, a controller interactor can grab a ball
object with XRI’s XR Grab Interactable component.
The interactor-interactable interaction paradigm is adopted
across various XR development platforms, including Meta and
Unreal Engine (although the terms may differ).

B. XR Scene Testing

Scene testing is a type of testing that focuses on exploring
XR scenes through two primary tasks: scene navigation and
interaction event triggering [4]. Wang et al. pioneered VR
scene testing with VRTEST [7] and VRGUIDE [8], intro-
ducing automated exploration techniques including random
and greedy-based methods. These tools established valuable
foundations for XR scene testing.

While effective for exploration, existing techniques lack
support for modern XR experiences with interactions via ded-
icated input devices like controllers INTENXION advances the
field by simulating realistic controller inputs, enabling testing
of complex spatial interactions. This approach complements
scene testing methodologies by adding specialised validation
capabilities for XR apps with rich interaction patterns.

C. Test Automation

Test automation and automated testing are two related but
distinct terms in software testing. Test automation refers to the
automation of test execution (e.g., using manually created test
data), while automated testing automates both test generation
and execution. While we acknowledge varied interpretations,
we maintain this distinction throughout this paper.

Test automation typically employs script-based frameworks
that execute predefined test cases. Industry-standard tools like
APPIUM for Android GUI testing demonstrate how scripted
approaches provide intuitive GUI validation [9]. In the XR
domain, Youkai [10] is a unit testing framework for Unity
VR/AR apps that rely on manually-written test scripts. How-
ever, no existing work addresses 3D user interaction testing
for XR, automating the validation of spatial interactions. This
gap is the focus of our tool INTENXION.

III. TAXONOMY OF XR USER INTERACTIONS

We establish a three-tiered taxonomy of XR interactions,
synthesising from HCI research and industrial practices. It
includes high-level tasks, atomic actions as interaction building
blocks, and compositional patterns for complex behaviours.
It structures interactions from abstract objectives to imple-
mentable actions, providing a foundation for systematic XR
testing and directly informing INTENXION’s design (§ IV).

To ensure term consistency throughout this paper, we clarify
that “interaction” denotes a complete bidirectional exchange
between a user and the XR app (e.g., selecting an object).
On the other hand, “action” refers to a specific, discrete step
performed by the user (e.g., pressing a controller button). In
other words, an “interaction” is a sequence of “actions”.

A. Core Task Categories

XR interaction revolves around three core spatial tasks [5]:
1) Selection: target acquisition and activation; 2) Manipula-
tion: object transformation; 3) Navigation: viewpoint move-
ment. These categories represent high-level user intents, form-
ing the key objectives for XR interaction testing.

2

https://github.com/ruizhengu/IntenXion
https://github.com/ruizhengu/IntenXion


Ju
st

Acc
ep

ted

B. Atomic Actions

The realisation of XR tasks relies on the atomic actions
enabled through input devices. Modern XR experiences typ-
ically incorporate 6DoF controllers (e.g., Meta Quest Touch
Plus7). The controllers enable interaction through two essential
input modalities: the trigger for initiating actions (e.g., weapon
firing), and the grab for grasping and manipulating objects.

When combined with controller movement, these modalities
enable four basic interaction tasks [11]. These tasks include:
1) Pointing: spatial targeting of objects; 2) Selection: initiat-
ing/confirming interaction intents; 3) Translation: relocating
objects; 4) Rotation: reorienting objects.

C. Compositional Patterns

Complex behaviours emerge through the composition of
atomic actions governed by design principles [12, 13, 14, 15].
These principles include: 1) Constrained Physics: axis-limited
movements (e.g., pulling a lever); 2) State Persistence: main-
taining action contexts (e.g., grab holding during navigation);
3) Sequential Patterns: ordered atomic action sequences, e.g.,
⟨grab and hold → spatial translation → release⟩.

IV. INTENXION TEST LIBRARY

Building upon the XR interaction taxonomy (§ III), we
implement its core tasks, atomic actions, and compositional
patterns into a test automation framework. This section de-
tails the mapping of interaction tasks to testable actions and
the technical implementation for simulating XR interaction
and validating interaction outcomes. Figure 1 illustrates the
overview of developing XR interaction tests with INTENXION.

A. Testable Interaction Mapping

Building on our interaction taxonomy (§ III), we map the
high-level interaction tasks to executable test actions across
the categories of navigation, selection, and manipulation. Each
category defines specific test responsibilities and required
interactions, and test actions. The test responsibilities are
explained as follows, and Table I summarises the mapping
of interaction tasks and test actions.

1) Navigation: Navigation involves positioning and orient-
ing the user’s viewpoint within the environment, independent
of controller inputs. This prepares the virtual user (i.e., a sim-
ulated agent representing the user within the XR environment)
for subsequent interactions by establishing optimal spatial re-
lationships to target objects through viewpoint transformation.

2) Selection: Selection requires controller-driven targeting
and activation. Targeting refers to the spatial alignment with
interactable objects through controller positioning. Activation
is the successful functional engagement with the objects via
trigger and grab inputs. Crucially, interaction initiation (at-
tempted activation) does not guarantee functional activation.
For instance, misaligned controller positioning would obstruct
intended functionality despite initiation attempts.

7 https://www.meta.com/quest/accessories/quest-touch-plus-controller/

TABLE I: Interactions and test actions required for XR inter-
action testing tasks

Tasks Required Interactions Test Actions

Navigation Position viewpoint near target Viewpoint movement

Selection Controller alignment, Trigger
(instant/continuous), Grab (in-
stant/continuous)

Controller movement,
Grab, Trigger

Manipulation Spatial transformation, Contin-
uous grab

Controller movement,
Grab

Fig. 1: Overview of INTENXION

Furthermore, interaction activation supports two temporal
modalities. This encompasses both instant actions (e.g., dis-
crete button presses) and continuous interactions requiring
state persistence (e.g., button holding) as identified in § III.

3) Manipulation: Manipulation enables spatial transforma-
tion of objects through sustained controller engagement, utilis-
ing the continuous grab actions (§ III). This task encompasses
two fundamental operations: translation and rotation (§ III-B).

B. Test Library Implementation

INTENXION is designed as a test automation framework
for XR user interactions, compatible with the Unity Test
Framework (UTF) [16]. The relationship resembles combining
unit testing frameworks like JUnit8 and unittest9 with APPIUM
for GUI testing. UTF offers similar test infrastructure, such
as test case management, execution control, and reporting [9]
while INTENXION delivers XR-specific capabilities.

We use Unity’s XR Interaction Simulator [17] to generate
controller inputs for atomic actions. This simulator indirectly
manipulates camera or controller positions through keyboard
and mouse emulations, rather than direct pose control. For
instance, pressing the W key to move the controller forward.

Table II lists all the APIs provided by INTENXION, covering
the tasks of Navigation, Selection, and Manipulation, aligning
with our mapping (§ IV-A). Moreover, an Assertion API set is
provided to enable the verification of the interaction outcomes.
Note that while the manipulation APIs support pitch/yaw rota-
tions (e.g., RotationUp) but not roll (longitudinal) rotations
due to simulator constraints.

INTENXION is designed to be extensible, enabling custom
interactions and assertions for specialised interaction require-
ments. We now detail two core capabilities: compositional
interaction handling and assertion mechanisms.

8 https://junit.org/ 9 https://docs.python.org/3/library/unittest.html

3

https://www.meta.com/quest/accessories/quest-touch-plus-controller/
https://junit.org/
https://docs.python.org/3/library/unittest.html


Ju
st

Acc
ep

ted

TABLE II: Test APIs Provided by INTENXION

Tasks Test APIs Functions

Navigation NavigateTo Position user near object

Selection

MoveControllerTo Aligns controller with object
Grab Instant object grabbing
GrabHold Continuous object holding
Trigger Instant action triggering
TriggerHold Continuous action triggering

Manipulation

MoveUp Translation: heave upward
MoveDown Translation: heave downward
MoveForward Translation: surge forward
MoveBackward Translation: surge backward
MoveLeft Translation: sway leftward
MoveRight Translation: sway rightward
RotateUp Rotation: pitch down
RotateDown Rotation: pitch up
RotateLeft Rotation: yaw left
RotateRight Rotation: yaw right
ReleaseAllKeys Release all pressed keys

Assertion

AssertGrabbed Confirm object is grabbed
AssertTriggered Confirm object is triggered
AssertTranslated Confirm object translation
AssertRotated Confirm object rotation

1) Compositional Interaction Handling: XR interactions
differ fundamentally from 2D interactions. While 2D interac-
tions often produce discrete state changes (e.g., activity navi-
gation via button taps in Android apps), XR requires sequential
composition of actions to achieve meaningful interactions.

To handle the compositional nature of XR interactions
(§ III), INTENXION adopts APPIUM’s action chains mech-
anism10. It facilitates 1) programmatic construction of ordered
action sequences, 2) intuitive authoring of complex interaction
patterns, and 3) human-readable test scripting.

Figure 2 demonstrates a test case developed with INTENX-
ION to validate a compositional interaction that involves grab,
trigger, and rotation actions. The test begins with viewpoint
navigation to the target object (lines 5-7), followed by con-
troller alignment with the target to initiate the interaction
(lines 9-11). The action sequence applied to the target involves
continuous grabbing (line 14), yaw rotation (line 15), an
instant trigger (line 16), and releasing all keys at the end
(line 17). Finally, assertions validate the interaction outcomes,
confirming successful grabbing, triggering, and rotation of
the target object (lines 19-21). The example showcases IN-
TENXION’s ability to compose test actions into meaningful
interactions that exercise object functionality, coupled with
validations of expected outcomes through assertions.

2) Assertion: Assertions serve as code-based test oracles,
validating expected behaviours in specific scenarios [18] and
are essential for systematic test automation [19]. INTENXION
provides specialised assertion APIs (Table II) that implement
two complementary validation approaches:
• Intearction state validation that leverages Unity XRI’s

interaction event system [20], registering callback listeners
on target objects. They monitor real-time state changes,

10 https://appium.github.io/appium.io/docs/en/commands/interactions/actions/

1 var blaster = FindGameObject("Blaster");
2 var blasterRot = blaster.transform.rotation;
3 Assert.IsNotNull(blaster, "Blaster not found");
4 // 1. Navigate to the blaster
5 yield return new ActionBuilder()
6 .NavigateTo(origin, blaster)
7 .Execute();
8 // 2. Move the controller to the blaster
9 yield return new ActionBuilder()

10 .MoveControllerTo(controller, blaster)
11 .Execute();
12 // 3. Grab hold and trigger the blaster
13 var action = new ActionBuilder();
14 action.GrabHold(1.0f)
15 .RotateLeft(0.1f)
16 .Trigger()
17 .ReleaseAllKeys();
18 yield return action.Execute();
19 AssertGrabbed(blaster, "Blaster ungrabbed");
20 AssertTriggered(blaster, "Blaster untriggered");
21 AssertRotated(blaster, blasterRot, "Blaster

unrotated");↪→

Fig. 2: A test case developed with INTENXION: Navigating
to an object, grab holding, rotating, triggering, and releasing
(action chains highlighted)

directly confirming interaction activation. APIs include
AssertGrabbed and AssertTriggered.

• Object property comparison that compares transform
properties of objects before and after interactions. APIs
inlucde AssertRotated and AssertTranslated.

While these core assertions capture fundamental XR in-
teraction characteristics, complex custom interactions may
require specialised validators. To address this, INTENX-
ION’s assertion APIs provide extensibility for developing
custom assertions tailored to unique interaction events and
object properties. Consider Unity’s VR Template scene11,
where objects implement custom interaction logic through
scripts like XRKnob. The script extends the capabilities of
Unity’s predefined XRBaseInteractable class, includ-
ing a value property that represents the dial’s current rota-
tional position within a defined range. The expected interac-
tion outcome involves changing this value property through
grab-and-rotate sequences. To validate this, we retrieve the
property before and after the interaction using calls like
dial.GetComponent<XRKnob>().value. After exe-
cuting the test actions, an assertion compares the two values,
where a change confirms that the interaction successfully
triggered the intended functionality. The example demonstrates
how INTENXION’s extensibility supports testing of domain-
specific interaction patterns.

While these custom validators are not included in INTENX-
ION’s built-in assertion API set, developers can adapt our test
case implementations to create application-specific validations.
This extensibility addresses a fundamental reality that, due to
the diverse and custom nature of XR apps, built-in assertions
cannot anticipate all domain-specific interaction patterns.

11 https://docs.unity3d.com/Packages/com.unity.template.vr@9.0/

4

https://appium.github.io/appium.io/docs/en/commands/interactions/actions/
https://docs.unity3d.com/Packages/com.unity.template.vr@9.0/


Ju
st

Acc
ep

ted

V. CASE STUDY

To demonstrate INTENXION’s practical utility in XR testing,
we conduct a case study using eight representative inter-
actable object types derived from industrial XR design guide-
lines [12, 15]. These object types require distinct interactions
to fully exercise functionality. They sufficiently cover our
established interaction taxonomy while representing common
XR interaction scenarios. The object types include: 1) Button:
instant activation with precise targeting; 2) Door: sequential
constrained translations of handle and door; 3) Drawer: con-
strained linear translation with persistent grab state; 4) Dial:
constrained rotation with persistent grab state; 5) Lever: con-
strained translation along fixed paths with persistent grab state;
6) Slider: constrained linear translation with persistent grab
state; 7) Socket: continuous grab with translation for object
placement; 8) Weapon: continuous grab with trigger activation.

We set up our study environment using Unity’s XR Interac-
tion Toolkit Examples12, as it provides prebuilt assets demon-
strating XRI’s functionality, including all eight interactable
object types. We develop a prototype XR scene containing
these objects to showcase INTENXION’s test automation ca-
pabilities and conduct the study on a MacBook Pro (M3 Pro,
36 GB RAM, macOS 15.6) running Unity 6000.0.45f1 with
XRI v3.1.1. The case study scene and test scripts are available
at: https://github.com/ruizhengu/IntenXion.

A. Results

To develop the test cases for the eight object types, one
developer (the first author) manually created one test suite with
eight test cases. The test suite also includes one setup function
to configure the test setting, including loading the prototype
scene and identifying the virtual user and the controller.

The developer spent around three hours developing and
executing the test cases, ensuring that the test cases could
sufficiently cover the object interaction functionalities. Fig-
ure 2 demonstrates the test case for the Weapon object type.
Among all eight test cases, the number of lines of code yields
the results of both average and median are around 18.

For all eight representative interactable object types, we
develop dedicated test cases using INTENXION’s APIs. Each
test case incorporates a sequence of interactions to exercise the
target objects’ functionalities. Moreover, it includes targeted
assertions to validate the expected outcomes, reflecting the
objects’ functional integrity, after interactions. For example,
for the Door objects, the action sequence involves unlocking
the handle and then pushing the door to open it. The included
AssertRotated verifies that the door is rotated (around
the hinge) to confirm that the door is opened. Similarly,
AssertTranslated is used to assess whether the Drawer
object is successfully pulled out.

The case study confirms INTENXION’s practical utility for
real-world XR testing grounded in industrial XR interaction
design principles. INTENXION successfully enables test case
development across all interaction requirements of diverse

12 https://github.com/Unity-Technologies/XR-Interaction-Toolkit-Examples

object types. The incorporated assertions utilised either built-in
INTENXION APIs or custom validators developed for object-
specific behaviors (discussed in § VI).

The approach ensures sufficient coverage of interaction
patterns while validating functional correctness for all test
subjects. These results validate INTENXION as an effective
XR spatial interaction testing solution, providing real-world
applicability through industrial-aligned scenarios. It offers in-
tuitive, testable functionality across diverse interaction designs,
as well as actionable validation capabilities.

VI. DISCUSSION

A. Test Case Quality

We assess test case quality by examining whether tests
developed with INTENXION fully exercise object functionali-
ties. For our eight representative interactable object types, IN-
TENXION achieves 100% coverage, incorporating test action
executions and assertions for validating expected behaviours.
While traditional metrics like code coverage offer quantitative
insights, they provide incomplete assessments of Unity apps
due to their implementation nature. Unity apps are developed
with logical source code and scene configurations (e.g., struc-
tures, object properties) that define runtime behaviours.

Focusing solely on code coverage neglects configuration-
dependent functionality, potentially misrepresenting actual test
case quality. Alternative approaches like mutating testing show
promise, having been successfully applied to GUI apps where
both source code and interface definitions can be mutated [21].
For Unity apps, serialised scene files [22] offer ideal mutation
targets. Future research should therefore explore mutation test-
ing methodologies specifically designed for XR environments,
capable of evaluating test case quality.

B. Extensibility

INTENXION’s extensibility supports both custom interac-
tions and assertions (§ IV-B) beyond the current focus on 3D
interactions, including scenarios like XR locomotion. How-
ever, effectively leveraging this extensibility requires testers to
possess a substantial understanding of the scenes and objects
under test. This foundational domain knowledge is essential
for designing meaningful tests and implementing tailored
interactions and validators for specialised functionality.

Given the practical focus of our contribution, the current
framework implementation and test case design represent
an initial step rather than definitive best practices. Future
empirical studies with industry practitioners will be crucial
to evaluate broader applicability and refine INTENXION’s
extensibility for industrial settings.

VII. CONCLUSION AND FUTURE WORK

This paper presents INTENXION, a test automation frame-
work designed to address the challenges of validating user
interactions in XR apps. We establish a taxonomy of XR
interaction derived from interaction designs and industrial
practices, which informs INTENXION’s design. We conduct
a case study to demonstrate INTENXION’s practical utility

5

https://github.com/ruizhengu/IntenXion
https://github.com/Unity-Technologies/XR-Interaction-Toolkit-Examples


Ju
st

Acc
ep

ted

using eight representative interactable object types from es-
tablished XR design guidelines. The results show that test
cases developed with INTENXION successfully cover all these
object types, incorporating dedicated actions sequences and
assertions to validate intended behaviors.

While INTENXION currently focuses on test automation,
our future work will extend it to support automated testing,
enabling the automatic generation of test cases and action
sequences. We also plan to assess INTENXION’s industrial
applicability through empirical studies with practitioners in
real-world XR development settings.

REFERENCES

[1] S. A. Andrade, A. J. U. Quevedo, F. L. S. Nunes, and
M. E. Delamaro, “Understanding VR Software Testing
Needs from Stakeholders’ Points of View,” in 22nd
Symposium on Virtual and Augmented Reality (SVR).
IEEE, 2020, pp. 57–66.

[2] X. Yang, Y. Wang, T. Rafi, D. Liu, X. Wang, and
X. Zhang, “Towards automatic oracle prediction for ar
testing: Assessing virtual object placement quality under
real-world scenes,” in Proc. of the 33rd ACM SIGSOFT
Intl. Symposium on Software Testing and Analysis, ser.
ISSTA 2024. ACM, 2024, p. 717–729.

[3] S. Li, C. Gao, J. Zhang, Y. Zhang, Y. Liu, J. Gu, Y. Peng,
and M. R. Lyu, “Less cybersickness, please: Demystify-
ing and detecting stereoscopic visual inconsistencies in
virtual reality apps,” Proc. ACM Softw. Eng., no. FSE,
2024.

[4] R. Gu, J. M. Rojas, and D. Shin, “Software testing
for extended reality applications: A systematic mapping
study,” Automated Software Engineering, 2025.

[5] R. Doerner, W. Broll, P. Grimm, and B. Jung, Eds.,
Virtual and Augmented Reality (VR/AR): Foundations
and Methods of Extended Realities (XR). Springer, 2022.

[6] Unity Technologies. Xr interaction toolkit package. https:
//docs.unity3d.com/Packages/com.unity.xr.interaction.t
oolkit@3.1. Accessed: 2025-07-24.

[7] X. Wang, “VRTest: An Extensible Framework for Auto-
matic Testing of Virtual Reality Scenes,” in IEEE/ACM
44th Intl. Conference on Software Engineering: Compan-
ion Proceedings (ICSE-Companion), 2022, pp. 232–236.

[8] X. Wang, T. Rafi, and N. Meng, “VRGuide: Efficient
Testing of Virtual Reality Scenes via Dynamic Cut Cov-
erage,” in 38th IEEE/ACM Intl. Conference on Automated
Software Engineering (ASE), 2023, pp. 951–962.

[9] R. Gu and J. M. Rojas, “An empirical study on the
adoption of scripted gui testing for android apps,” in 2023
38th IEEE/ACM Intl. Conference on Automated Software
Engineering Workshops (ASEW), 2023, pp. 179–182.

[10] T. Figueira and A. Gil, “Youkai: A cross-platform frame-
work for testing vr/ar apps,” in HCI Intl. 2022 – Late
Breaking Papers: Interacting with eXtended Reality and
Artificial Intelligence. Springer Nature Switzerland,
2022, pp. 3–12.

[11] B. Spittle, M. Frutos-Pascual, C. Creed, and I. Williams,
“A review of interaction techniques for immersive en-
vironments,” IEEE Transactions on Visualization and
Computer Graphics, vol. 29, no. 9, pp. 3900–3921, 2023.

[12] Meta, “Object interaction, part 1: Common interaction
patterns,” https://developers.meta.com/horizon/blog/o
bject-interaction-part-1-common-interaction-patterns/,
2017, accessed: 2025-07-24.

[13] ——, “Object interaction, part 2: Locomotion and held
objects,” https://developers.meta.com/horizon/blog/objec
t-interaction-part-2-locomotion-and-held-objects/, 2017,
accessed: 2025-07-24.

6

https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1
https://developers.meta.com/horizon/blog/object-interaction-part-1-common-interaction-patterns/
https://developers.meta.com/horizon/blog/object-interaction-part-1-common-interaction-patterns/
https://developers.meta.com/horizon/blog/object-interaction-part-2-locomotion-and-held-objects/
https://developers.meta.com/horizon/blog/object-interaction-part-2-locomotion-and-held-objects/


Ju
st

Acc
ep

ted

[14] ——, “Object interaction, part 3: Releasing objects,” http
s://developers.meta.com/horizon/blog/object-interaction
-part-3-releasing-objects/, 2017, accessed: 2025-07-24.

[15] ——, “Object interaction, part 4: Constrained interac-
tions,” https://developers.meta.com/horizon/blog/-obj
ect-interaction-part-4-constrained-interactions/, 2017,
accessed: 2025-07-24.

[16] Unity Technologies, “Unity test framework,” https://docs
.unity3d.com/Packages/com.unity.test-framework@2.0/,
accessed: 2025-07-24.

[17] ——. Xr interaction simulator overview. https://docs.u
nity3d.com/Packages/com.unity.xr.interaction.toolkit
@3.1/manual/xr-interaction-simulator-overview.html.
Accessed: 2025-07-24.

[18] F. Molina, A. Gorla, and M. d’Amorim, “Test Oracle
Automation in the Era of LLMs,” ACM Trans. Softw.
Eng. Methodol., 2025.

[19] I. Arcuschin, L. Di Meo, M. Auer, J. P. Galeotti, and
G. Fraser, “Brewing up reliability: Espresso test gen-
eration for android apps,” in 2024 IEEE Conference
on Software Testing, Verification and Validation (ICST),
2024.

[20] Unity Technologies, “Interaction events,” https://docs.uni
ty3d.com/Packages/com.unity.xr.interaction.toolkit@3.1
/manual/interactable-events.html, accessed: 2025-07-24.

[21] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei, “Muta-
tion operators for testing android apps,” Information and
Software Technology, vol. 81, pp. 154–168, 2017.

[22] Unity Technologies, “Text-based scene files,” https://do
cs.unity3d.com/6000.2/Documentation/Manual/TextSce
neFormat.html, accessed: 2025-07-24.

7

https://developers.meta.com/horizon/blog/object-interaction-part-3-releasing-objects/
https://developers.meta.com/horizon/blog/object-interaction-part-3-releasing-objects/
https://developers.meta.com/horizon/blog/object-interaction-part-3-releasing-objects/
https://developers.meta.com/horizon/blog/-object-interaction-part-4-constrained-interactions/
https://developers.meta.com/horizon/blog/-object-interaction-part-4-constrained-interactions/
https://docs.unity3d.com/Packages/com.unity.test-framework@2.0/
https://docs.unity3d.com/Packages/com.unity.test-framework@2.0/
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1/manual/xr-interaction-simulator-overview.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1/manual/xr-interaction-simulator-overview.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1/manual/xr-interaction-simulator-overview.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1/manual/interactable-events.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1/manual/interactable-events.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.1/manual/interactable-events.html
https://docs.unity3d.com/6000.2/Documentation/Manual/TextSceneFormat.html
https://docs.unity3d.com/6000.2/Documentation/Manual/TextSceneFormat.html
https://docs.unity3d.com/6000.2/Documentation/Manual/TextSceneFormat.html

	Introduction
	Background and Related Work
	XR Development with Unity
	XR Scene Testing
	Test Automation

	Taxonomy of XR User Interactions
	Core Task Categories
	Atomic Actions
	Compositional Patterns

	IntenXion Test Library
	Testable Interaction Mapping
	Navigation
	Selection
	Manipulation

	Test Library Implementation
	Compositional Interaction Handling
	Assertion


	Case Study
	Results

	Discussion
	Test Case Quality
	Extensibility

	Conclusion and Future Work

